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bstract

A dynamic PEM fuel cell model has been developed, taking into account spatial dependencies of voltage, current, material flows, and temperatures.
he voltage, current, and therefore, the efficiency are dependent on the temperature and other variables, which can be optimized on the fly to achieve
ptimal efficiency. In this paper, we demonstrate that a model predictive controller, relying on a reduced-order approximation of the dynamic PEM
uel cell model can satisfy setpoint changes in the power demand, while at the same time, minimize fuel consumption to maximize the efficiency.

he main conclusion of the paper is that by appropriate formulation of the objective function, reliable optimization of the performance of a PEM

uel cell can be performed in which the main tunable parameter is the prediction and control horizons, V and U, respectively. We have demonstrated
hat increased fuel efficiency can be obtained at the expense of slower responses, by increasing the values of these parameters.

2007 Elsevier B.V. All rights reserved.
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. Introduction

Fuel cell models of various levels of complexity have been
uggested, describing their performance under an array of con-
itions [1–3]. These models have been used to evaluate optimal
chemes of external heating, water management and fuel com-
osition. The regulation of the transient response of fuel cells is
mportant for vehicular applications, since the power demands
uctuate, and the fuel cell will not be working at the optimal
teady state designed by its manufacturer. It is desirable to con-
rol the fuel cell so that acceptable response time for the power
emand is ensured, while achieving high efficiencies. Dynamic
odels facilitate the design and testing of control systems. To

his end, a dynamic empirical model for the transient response
f a fuel cell was developed by Amphlett et al. [4]. This is
lumped model with no spatial dependence. Kang et al. [5]

resent an analysis of a dynamic model for a molten-carbonate

uel cell (MCFC) where the system is modeled as a collection
f first order transfer functions with dead times. More recently,
oad distribution control in hybrid vehicles has been investigated
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6,7], motivated by the benefits in improved dynamic response
f systems combining fuel cells and a battery. In addition, con-
rol of the power conditioning unit is addressed [8] along with
ontrol of the fuel delivery system [9]. These studies typically
reat the fuel cell itself as a type of disturbance and its control
s not addressed. Lauzze and Chmielewski [10] attempt to per-
orm multivariable control using separate linear PID controllers.
owever, the system’s high degree of interaction between the
ifferent control loops is evident.

In previous work [11], we described a framework to control
he fuel cell using nonlinear model-based control. We pro-
osed a transient model, based on the ideas presented by Yi
nd Nguyen [2], modeling a fuel cell along its channel. Both
odels account for heat transfer between the solid and the two

as channels, and between the solid and cooling water. In addi-
ion, the water content is modeled, accounting for condensation
nd evaporation, water drag through the membrane, and water
eneration at the cathode. However, we account for the tran-
ients in the energy balance on the solid, with all the other
quations assumed to be at quasi-steady-state in equilibrium
ith a given solid temperature profile. This spatially dependent

odel is referred to as the “full-order” model, and is used to rep-

esent the true process in closed-loop simulations. Furthermore,
first-order, time dependent model of a fuel cell has been devel-
ped, which is fast enough to use for on-the-fly optimization of

mailto:dlewin@tx.technion.ac.il
dx.doi.org/10.1016/j.jpowsour.2007.04.062
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Nomenclature

a solid-gas heat transfer area per unit length along
channel (cm)

A matrix for linear constraints in NLP
b solid-coolant heat transfer area per unit length

along channel (cm)
B vector for linear constraints in NLP
C target function weight matrix of NLP
Cp solid heat capacity (J (g K)−1)
D diffusion coefficient (cm2 s−1)
e area of current per unit length along channel (cm)
f cross-section of solid in direction of reactant flow

(cm2)
F Faraday constant (C s−1)
h channel width (cm)
�H enthalpy of overall reaction (J mol−1)
�Hvap enthalpy of water condensation (J mol−1)
I current density (A cm−2)
I0 exchange current density (A cm−2)
J objective function for MPC
L channel length (cm)
m vector of optimization variables
M molar flow (mol s−1)
P power density (W cm−2)
Pj partial pressure of species j (atm)
R gas constant (8.314 J (mol K)−1)
S weight coefficient matrix for control moves
tm membrane thickness (cm)
T temperature (K)
u control variable
�u change in control variable value
U heat transfer coefficient (W (cm2 K)−1)
V prediction horizon
Vcell cell voltage (V)
VOC open circuit voltage (V)
W

1
weight coefficient matrix for setpoint tracking

y output variable

Greek letters
δ length of diffusion layer (cm)
γ minimum value for gradient
η efficiency
ϕ minimum stoichiometric ratio between hydrogen

and current
Λ waste value (mol s−1)
ρ solid density (g cm−3)
σ membrane conductivity (
 cm)−1

ωeff weight coefficient matrix of efficiency

Subscripts
a anode
avg average
c cathode
cool coolant
g gas

H2 hydrogen
i time step
in inlet
inf surroundings
N2 nitrogen
O2 oxygen
oc open circuit
s solid
set set point
w water

Superscripts
l liquid
sat saturation
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perating parameters to ensure convergence to required power.
his reduced model was used by a model-predictive-controller

described below) to regulate the power output of the fuel cell.
s demonstrated in Golbert and Lewin [11], model predictive

ontrol (MPC) relying on this model is more robust than stan-
ard linear control, especially in regions of high power density.
n addition, multiple degrees of freedom can be used to improve
erformance.

The objective of this paper is to demonstrate that MPC can
e further exploited to achieve both robust performance as well
s improved fuel efficiency. We begin by reviewing the model
redictive control method and explain the solution procedure.
ext, we review the reduced-order fuel cell model utilized
y the controller. Using this reduced model we describe the
PC formulation for fuel efficiency. Finally, we present the

esults obtained, comparing the performance with and with-
ut accounting for optimal efficiency. The results show that
dvanced model-based control can improve efficiency by uti-
izing the degrees of freedom in the fuel cell operation. A novel
efinition of the MPC target function is presented which simul-
aneously achieves convergence and maximizes efficiency as
pposed to a trade-off between the two concerns.

. Modeling and analysis

.1. Description of MPC

Model predictive control [12] is part of a family of
ptimization-based control methods, which are based on on-line
ptimization of future control moves. Using a process model,
he optimizer predicts the effect of past inputs on future outputs.
hen, using the same model, it computes a sequence of future
ontrol moves to minimize an objective function that including
enalties on the trajectory of predicted tracking error. The first of

he future control moves is implemented, and the entire optimiza-
ion is repeated from the next step on, and so on, ad infinitum.
eedback is used to account for the model’s inaccuracies and to
nsure convergence.
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The work described in this paper solves the optimization
roblem implicit in MPC simultaneously using the approach of
iegler [13], briefly reviewed next. A typical nonlinear discrete

ystem is defined as

k+1
= f (y

k
, uk) (1)

To simplify nomenclature, we assume no system memory,
hat is, yk+1 depends explicitly only on the system values at time
(i.e., no time lag), noting that dependencies on historical data

an be included with no loss of generality. For such a system, a
onlinear problem is defined as

min
�u1, . . . , �uU

y
1
, . . . , y

V

J(�u1, . . . , �uU, y
1
, . . . , y

V
)

≡
V∑

i=1

y
i
W

i
y

i
+

U∑
i=1

�uiSi
�ui

s.t. y
k+1

− f (y
k
, uk) = 0, y

min
≤ y

k
≤ y

max
k = 1, . . . , V

umin ≤ uk ≤ umax, �umin ≤ �uk ≤ �umax k = 1, . . . U

(2)

here the value of the control variables is simply the sum initial
alues and the changes in the variables:

k = u0 +
k∑
i

�ui (3)

The target function, J, expresses the trade-off between the
onvergence to a desired trajectory in the outputs and the
equired moves of the control variables, u. As will be shown
ater in this paper, the target function determines the closed loop
erformance of the system.

In reality, the control variables (throughout the control
orizon) are the only independent variables, whereas the opti-
ization variables are defined as the control variables, �u, and

he output variables, y. The apparent discrepancy in the num-
er of degrees of freedom is resolved by the nonlinear equality
onstraints. These constraints ensure that the output values of
he optimization solution are feasible as defined by the system
quations given as Eq. (1). The equality constraints reduce the
egrees of freedom of the optimization to be identical to the
umber of control moves.

To achieve the classic form of an NLP, the optimization
ariable, m, is defined as the concatenation of the changes
n the control variables (over the control horizon) and the
alues of the output variables (over the prediction horizon):
= [�u1, . . . , �uU, y1, . . . , yV]T. The replacement of the lin-

ar bounds in Eq. (2) by linear constraints and bounds on m is
traightforward resulting in the final NLP which is solved at
very time step:

min
m

J(m) ≡ mTCm

s.t. g(m) = 0, Am ≤ B, mmin ≤ m ≤ mmax

(4)
.2. Reduced-order model

The model used in the MPC framework is a time dependant,
umped parameter model of the flow channels, and membrane,

T

T

er Sources 173 (2007) 298–309

ncluding temperatures and water content. Since this model has
een detailed in Golbert and Lewin [11], we state only the key
quations here. Assuming quasi-steady-state for most of the state
ariables leaves the temperature of the solid as the only dynamic
ariable:

dTs

dt
= fTs (Ts, Tcool, ..., Iavg)

= 1

ρsCps

(
Uga

f
(Ta + Tc − 2Ts) + Ucoolb

f
(Tcool − Ts)

− e

f

(
�H

2F
+ Vcell

)
Iavg + 1

fL
�Hvap(Ts)

×
(
Ml

w,a − Ml
w,a,in + Ml

w,c − Ml
w,c,in

)

−2Uinf

L
(Ts − Tinf )

)
(5)

The Nernst equation defines the dependence of the voltage
n the current density accounting for overpotentials:

cell = fVcell (T, PH2,s, . . .)

= V o
OC + RT

2F
log

(
PH2,s

√
PO2,s

PH2O,s

)

+ RT

F
log

(
I0

I
PO2,s

)
− Itm

σm
(6)

here the concentration overpotential is accounted for by defin-
ng:

PH2,s =
(

PH2,b − δI

2FDH2

)
,

PO2,s =
(

PO2,b(x) − δI

4FDO2

)
and

PH2O,s =
(

PH2O,b + δI

2FDH2O

)

The solution of Eq. (6) gives the current density. The con-
entrations of the reactant hydrogen and oxygen and the water
roduct are governed by simple mass balances where their pro-
uction/consumption rates are dependent on the current density.
he spatially dependent model is simplified to enable rapid cal-
ulation for control and optimization purposes by lumping the
patial dependencies, which results in simple algebraic equa-
ions (see Golbert and Lewin [11], for details):

H2 = −hL

2F
Iavg + MH2,in (7)

O2 = −hL

4F
Iavg + MO2,in (8)

UgaL(Ts − Tk)

k = Tk,in + ∑Nk

i Cp,iMi

, k = a, c (9)

cool = Tcool,in + UcoolbL(Ts − Tcool)

Cp,wMcool
(10)
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Since the system is assumed to be at quasi-steady-state, the
ater vapor in each channel is assumed to be at equilibrium
ith liquid water if present (i.e., at the saturation pressure), in
hich case the amount of liquid is a balance of water entering

nd exiting the channel:

Mv
w,a = MH2

Pa/Psat(Ta) − 1
,

Ml
w,a = Mv

w,a,in + Ml
w,a,in − Mv

w,a − α
hL

F
I (11a)

If this results in a negative value for the liquid water, then the
node is not in equilibrium, and there is no liquid water present:

v
w,a = Mv

w,a,in + Ml
w,a,in − α

hL

F
I, Ml

w,a = 0 (11b)

The water content at the cathode is similarly calculated
ncluding the expression for water generation from the reaction.
f the cathode water is at equilibrium:

Mv
w,c = MO2 + MN2

Pc/Psat(Ta) − 1
,

Ml
w,c = Mv

w,c,in + Ml
w,c,in − Mv

w,c + α
hL

F
I + hL

2F
I (12a)

Otherwise there is no liquid water present:

Mv
w,c = Mv

w,c,in + Ml
w,c,in + α

hL

F
I + hL

2F
I,

Ml
w,c = 0 (12b)

In Eqs. (11a), (11b), (12a) and (12b), α, the water drag ratio, is
function of the temperature, pressures and water content [14].
ince the water content is, in turn, a function of α Eqs. (11a),
11b), (12a) and (12b) define an implicit equation, the solution
f which results in the value of α:

= f�(Ta, Tc, M
v
w,a(α), Mv

w,c(α), Pa, Pc)

= f�(Ta, Tc, α, Pa, Pc) (13)

.3. Definition of optimization problem

In this paper we will address a system where the control vari-
bles are the dry hydrogen flow rate (assumed to be humidified),
he coolant temperature and the average current density. Origi-
ally, the system was defined using the solid temperature, cell
oltage and water drag ratio, α:

i ≡

⎡
⎢⎣

MH2,i

Tcool,i

Iavg,i

⎤
⎥⎦ , y

i
≡

⎡
⎢⎣

Ts,i

Pi

αi

⎤
⎥⎦ (14)

.3.1. Objective function

In Golbert and Lewin [11] we demonstrated that nonlinear

PC can satisfy changes in load demands robustly. We showed
hat the usage of multiple manipulated variables can improve
he response time of the system, with the target function to be

m
o
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inimized being the sum of square errors from the setpoint,
ith a penalty on the moves required in the manipulated vari-

bles. Clearly, there is potential for the optimizer to exploit the
egrees of freedom inherent in the fuel cell design to improve the
uel-efficiency. In this regard, efficiency is defined as the ratio
etween the actual power produced and the heat of formation of
he water produced if all the hydrogen feed is consumed:

= hLP

�HMH2

(15)

Since the MPC solves a minimization problem, a waste vari-
ble is defined, 1 − η, which is to be minimized by the optimizer.
he most obvious way to improve the efficiency is to lower the

eed flow rate. This is offset with the need for sufficient hydrogen
oncentration to achieve satisfactory voltage. This is the rea-
on that the controller will not reduce the hydrogen too much,
ince the concentration overpotential will become unbearable
nd compromise the power output. The optimization problem is
ow defined as the weighted sum of the performance (the dif-
erence between the set point and the actual power), the size of
he control steps and the local efficiency over time:

(�u, y) = (1 − ωeff)(P − Pset)
TW

1
(P − Pset)

+ ωeff(1 − η)T(1 − η) + �uTS�u (16)

here the power density, P , is not calculated, but merely is a
omponent of vector y

-
. The parameter ωeff expresses the desired

rade-off between performance and efficiency, while the coeffi-
ients of the diagonal matrix W

1
are selected to scale the terms

n proportion to their importance.
Unfortunately, the definition of efficiency in Eq. (15) can lead

o numerical problems, since it involves division by the hydrogen
ow rate, which at low values, will lead to excessively large
bjective function gradients, and at high values to gradients in
he efficiency contribution to J that approach zero. Consequently,
ither the optimizer will give excessive attention to efficiency,
r will completely ignore it, depending on the local value of
he hydrogen flow rate. To avoid these problems, the following
xpression for the efficiency loss, Λ- , is used for the optimization:

= MH2 − hL

�H
P (17)

The second term in Eq. (17) is the minimum hydrogen nec-
ssary for the actual amount of power produced based on the
hange in enthalpy due to the oxidation of hydrogen. Note that
f the hydrogen flow rate exactly matches the amount needed
o satisfy the power demand, Λ = 0, and the influences of the
ower and hydrogen feed are retained in this formulation of the
ystem inefficiency. Using this modified loss efficiency term, the
bjective function is now:

(�u, y) = (1 − ωeff)(P − Pset)
TW

1
(P − Pset)

+ ωeffΛ
TW Λ + �uTS�u (18)
2

In Eq. (18) it is noted that the coefficients of the diagonal
atrix W

2
are set to 1010 to scale the second term with the

thers.
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is at steady state with an offset in the power density. This is due
to the trade-off in the optimization target function between con-
vergence and efficiency (note that the initial efficiency in Fig. 2
is greater that that of Fig. 1). In the same spirit, the efficiency

Table 1
MPC tuning parameters

Parameter Values

W
1

Since the only output variable specified in
the objective function is the tracking error
from the power set point, the only relevant
entry scales this error. A value of 5 is used

W
2

1010 on the main diagonal

S The coefficients for the three manipulated
02 J. Golbert, D.R. Lewin / Journal

.3.2. Equality constraints
The equality constraints, representing the discrete system,

nclude the difference equations for the solid temperature based
n Eq. (5) for each of the V time steps in the prediction horizon:

gi(u- i, y- i
) ≡ Ts,i+1 − Ts,i − fTs (Ts,i, Vcell,i, αi, . . .)�t = 0,

i = 0, 1 . . . , V − 1 (19)

Note that the numerical solution of Eq. (5) is implemented
sing the explicit Euler method, although increased accuracy is
ossible by invoking higher-order methods. Note that for sim-
licity, all variables assumed to be constant (for example the
hannel pressures and inlet temperatures) are not noted in the
quations. The equality constraint for the power density requires
hat the assumed value for the power equals the calculated value,
here the voltage, Vcell,i, is calculated using Eq. (6):

2(ui, yi) ≡ Pi − IiVcell,i = 0, i = 0, 1 . . . , V − 1 (20)

The nonlinear equation (13) for α for each time step is also
epresented by a constraint:

3(ui, yi) ≡ αi − f�(Ts,i, αi, . . .) = 0 (21)

It is well known that the fuel cell power–current curve exhibits
maximum value, while the voltage–current curve is nonlinear
ut monotonically decreasing. As a result of these characteris-
ics, it is desirable to limit the operation region of fuel cells to
lways lie to the left of the peak in power, since this will ensure
perating at high voltage and higher efficiencies. Unfortunately,
t high power demands, the system can cross the maximum, and
s was shown by Golbert and Lewin [11], model inaccuracies can
ead to mistaken predictions of the sign of the gain between the
ower and current density. A controller relying on this prediction
ould lose the ability to control the system. On the other hand,
sing the voltage as a state variable is advantageous since the
oltage–current curve is always monotonous. Therefore, even if
he reduced model is inaccurate, the gain between the current
nd voltage is always negative. In this case, the target function
alculates the predicted power by multiplying the voltage and
urrent before comparing the result to the desired set point of
he power:

(�u, y) = (1 − ωeff)(IavgVcell − Pset)
TW

1
(IavgVcell − Pset)

+ ωeffΛ
TW

2
Λ + �uTS�u (22)

gain, Iavg and Vcell are not calculated in Eq. (22), rather simply
xtracted from �u and y, respectively.

The nonlinear equality constraint replacing Eq. (20) in this
ase is

g2(ui, yi) ≡ Vcell,i − fVcell (Ts,i, MH2,i, . . .) = 0,

i = 0, 1 . . . , V − 1 (23)
.3.3. Inequality constraints
The changes in the control variables, rather than the actual

alues themselves, are used for the optimization, so a number of
inear constraints are necessary. First, each control variable has
er Sources 173 (2007) 298–309

maximum and minimum value. Since the actual variables for
he optimization problem are defined in terms of changes from
he previous value, we require, for each time step, that the sum
f the initial value and the sum of all the preceding steps not
xceed either the limits for each variable.

Another constraint places a lower limit on the ratio between
he inlet fuel flow rate and the current density drawn from the
uel cell. Again, since the optimization variables are the changes
n the control variables this requirement translates into linear
nequality constraints. For specific details regarding these con-
traints see Appendix A.

. Results and discussion

.1. Trade-off between fuel efficiency and performance

We present results showing the closed-loop response subject
o a setpoint change from 0.3 to 0.5 W cm−2 and back again.
he control and prediction horizons are five and six time steps,

espectively, using a time step of 0.5 s. As can be seen, the tem-
erature of the coolant is damped as is the hydrogen inlet flow
ate. The output variables are defined as the solid temperature
nd power density. In this example, the temperature is not con-
rolled at all, so its weight in W

1
is set to zero. The selection of

he coefficients of the scaling matrices enable the tuning of the
verall performance, as will be seen. The MPC tuning param-
ters used in this study are listed in Table 1. The parameters
efining the PEM system simulated are identical to those used
n Golbert and Lewin [11].

Fig. 1 shows the closed-loop response obtained when the only
esire is to ensure robust convergence to the desired setpoint,
ith the value of ωeff set to zero. As can be seen, the initial

fficiency is 15%, dropping to 11% as the power approaches
.5 W cm−2, due to the increase in the hydrogen inlet flow rate.
ubsequently, the current is dropped to lower the power den-
ity to 0.3 W cm−2, but the fuel flow rate is kept high and the
fficiency drops to 6.5%. In contrast, Fig. 2 shows the response
btained when the efficiency is taken into consideration by set-
ing ωeff to 0.2. The first thing to notice is that up to 5 s the system
variables are 30, 100, and 10, respectively
�t 0.5 s
U 5
V 6
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ig. 1. Performance with no weight on efficiency and no effective limit on
ell voltage: (a) Power and voltage trajectories; (b) manipulated variables; (c)
nstantaneous efficiency, η.

etween 5 and 15 s is greater in Fig. 2 at the expense of slower
onvergence to the desired setpoint. This is achieved by using a

ower fuel flow rate than the previous example.

Starting from t = 15, however, the fuel flow rate is lowered
n an attempt to improve the efficiency, although it is obvious
hat the tracking ability of the controller is severely hampered.

l
t
f
(

ig. 2. Performance with weight on efficiency (ωeff = 0.2) and no effective limit
n cell voltage: (a) Power and voltage trajectories; (b) manipulated variables;
c) instantaneous efficiency, η.

lose examination of the plot of the current density shows that
he controller is increasing the current density in an attempt to

ower the power density—meaning that the controller, either due
o model inaccuracies or changes in the system conditions, has
ound itself on the right of the peak in the power–current plot
see Fig. 3).
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Fig. 4. Schematic voltage-current plot.

Fig. 3. Schematic power-current plot.

In this case, the controller will raise the current density in
rder to lower the power, as required by the change in Pset,
n Fig. 2. This occurrence has been observed primarily when
he setpoint is lowered (as opposed to being raised) since both
onsiderations (convergence and efficiency) are satisfied by
owering the fuel flow rate. Since both criteria tend to lower the
uel flow rate, this can lead to excessive changes, which change
he power–current curve and “trap” the system to the right of
he peak. When the setpoint is raised, on the other hand, the
onvergence criterion tends to increase the fuel flow rate while
he efficiency criterion tends to lower it. This conflict of interest

oderates the change in the fuel flow rate. In an attempt to
rotect the system from crossing the maximum power density,
e tried defining a lower limit for the voltage and introducing

his as a boundary for the NLP (remember that the voltage
tself is one of the optimization variables). The rational for this
pproach can be explained by observing the schematic diagrams
f the current–power and current–voltage plots in Figs. 3 and 4.

In essence, the requirement is that the current not exceed the
alue corresponding to the peak of the power plot, I*. Since I*
orresponds to a specific voltage, limiting the actual voltage to
e above a limiting voltage, Vmin, will limit the current to the
eft of the power peak. The results using this approach, for the
ase identical to that of Fig. 2, with the cell voltage limited to
alues above 0.5 V, are shown in Fig. 5.

It is clear that this approach does not solve the problem of
rossing the power peak. Closer examination of the curves in
ig. 6, shown for varying amounts of hydrogen illustrate why

his is so. Obviously an infinite number of hydrogen/current
ombinations correspond to a given voltage. Thus, setting a limit
n the voltage implies no constraint on the current, and as seen
n Fig. 5, the system can indeed jump to the left side of the power
eak.
Although it is theoretically possible to define settings that
ould result in better performance, this is not a systematic
pproach and cannot be relied upon as a satisfactory solution.

more rigorous solution is to define a nonlinear constraint

Fig. 5. Performance with weight on efficiency (ωeff = 0.2) and effective limit
on cell voltage (Vcell > 0.5): (a) Power and voltage trajectories; (b) manipulated
variables.
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Fig. 6. Schematic voltage-current plot for varying hydrogen content.

hereby the partial derivative of the power to the current is
bove a set value:

∂P

dIavg
> γ (24)

By definition, Eq. (24) ensures that, to the controller’s best
nowledge, the system is always to the left of the power–current
eak in Fig. 7. Clearly, if the controller model were perfectly
ccurate, it would be sufficient to ensure that the gradient in
q. (24) is positive (γ = 0). However, due to model inaccura-
ies, a larger value for γ is used (we have used γ = 0.2). Fig. 8
hows the obtained closed-loop response when using the con-

traint in Eq. (24). Comparing the overall efficiency (12.8%)
n Fig. 8 to that of Fig. 1 (10.3%) we see that using the effi-
iency in the NLP’s target function results in a 25% efficiency
mprovement.

Fig. 7. Schematic power-current plot for varying hydrogen content.

F
∂

(
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o
i

ig. 8. Performance with weight on efficiency (ωeff = 0.2) and limit on
P/dIavg > 0.2: (a) Power and voltage trajectories; (b) manipulated variables;
c) instantaneous efficiency, η.

.2. Ensuring offset-free response
Although the increase in efficiency is encouraging, the
ffset from the desired power setpoint is troubling. This
s inherent in the formulation of the NLP, since at steady
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Fig. 9. Performance with weight on final efficiency, U = 5, V = 6, (ωeff = 0.2)
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tate, �u = 0 and the optimal solution is the minimal value
f:

(�u, y) = (1 − ωeff)(P − Pset)
TW

1
(P − Pset)

+ ωeffΛ
TW

2
Λ (25)

Is the case of no efficiency consideration ωeff = 0 and the
ptimal solution is complete offset-free convergence. However
or any other value of ωeff, the final value will always display
ffset since the optimum will be some trade-off between the two
lements of Eq. (25).

The crux of the problem is the desire to satisfy two – often
onflicting – criteria, convergence and efficiency. One attempt
o solve this problem was to add extra weight to the last line
f the W

1
matrix. With the intention of forcing the optimizer

o converge by the end of the prediction horizon. The expecta-
ion was that the optimizer would find the fuel efficient path to
onvergence by the end of the prediction horizon, if not before
hat.

However, although the optimizer did propose sequences that
onverged at the end of the prediction horizon, it is important
o recall that MPC, unlike optimal control, actually imple-

ents the first step only. Thus, at some point, the optimizer
ecided that, as defined by Eq. (18), it is best to do noth-
ng at first, reap the benefits of efficiency for a while and
nly later on in the control horizon bring the system to con-
ergence. If the system is at steady state, and the optimizer
as decided that no control moves will be made in the fol-
owing time step, the subsequent optimizations will be the
ame, ad infinitum, even with offset from the desired set-
oint. Thus, even though the open loop NLP solution predicts
ffset-free convergence, closed loop performance will have off-
et.

In searching for a formulation of the NLP that will avoid this
cenario, we realized that it is crucial to prevent the possibility
f the optimal solution’s first moves to be zero. This can be
revented by formulating a target function that consists only of
penalty for control moves, �uTS�u, and imposing a constraint
n convergence. Since a large number of small control moves
ncur a smaller penalty than a small number of large control

oves, the optimizer will tend to use all of the moves available
o it including the first step. With this in mind we defined the
arget function as follows:

(�u, y) = ωeffΛ(V )2 + �uT S�u (26)

In addition to the equality constraints, Eqs. (19), (21) and,
23), we require that:

(V ) − Pset = 0 (27)

n Eq. (26) only the value of the waste variable, Λ, at time step V
the end of the prediction horizon) appears, and the target func-

ion is dominated by the penalty on the control moves. Satisfying
q. (27) ensures that the optimizer plans a sequence of control
oves that converges at the end of the prediction horizon to the

ower setpoint.

f
c
c
c

nd limit on ∂P/dIavg > 0.2: (a) Power and voltage trajectories; (b) manipulated
ariables; (c) instantaneous efficiency, η.

To understand the closed-loop behavior when using this

ormulation, we examine the case where ωeff = 0. In this
ase, the solution seeks to minimize the penalty on the
ontrol moves and results in a monotonous sequence of
ontrol moves, achieving convergence at the end of the
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Fig. 10. Performance with weight on final efficiency U = 3, V = 4, (ωeff = 0.2)
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nd limit on ∂P/dIavg > 0.2: (a) Power and voltage trajectories; (b) manipulated
ariables; (c) instantaneous efficiency, η.

ontrol horizon. It is important to note that for systems

ith more inputs than outputs there are numerous combina-

ions of control that satisfy the convergence. For example,
n Fig. 1(b), the system converges to a power setting of
.3 W cm−2 twice, initially with low hydrogen flow rate and

a
i
m
t
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ubsequently using a higher hydrogen flow rate and a lower
urrent.

For ωeff = 0, any of the possible steady states is satisfac-
ory. If ωeff is non-zero, however, the system will converge
o the steady state that satisfies Eq. (27) and has the highest
fficiency. Unlike before, however, since the target function
s not affected by the efficiency during the prediction horizon
he optimal control sequence is monotonous and the dis-
repancy between the open and closed loop performance is
voided.

To avoid defining unfeasible constraints, Eq. (27) is combined
ith the objective function of Eq. (26), giving

(�u, y) = ϕ(P(V ) − Pset)
2 + ωeffΛ(V )2 + �uTS�u (28)

here ϕ is a very large weight (in the following example,
= 1000). As ϕ approaches infinity, we approach the original

ormulation of Eqs. (26) and (27). Fig. 9 illustrates the per-
ormance obtained using this new formulation, for the same
onditions as those in Fig. 8.

Comparing these results with Fig. 8 clearly shows the
mproved convergence with very little offset (which would
e completely eliminated if ϕ were infinite). Also note that
he overall efficiencies for both cases are almost identical.
nother advantage of this formulation is its ease of tuning.
ere, the coefficients of S have no affect on convergence to

he desired setpoint, but only affect the degree to which each
f the manipulated variables is utilized. Likewise, since the
onvergence is ensured as a constraint, there is no trade-off
etween convergence and efficiency, so tuning ωeff is also
rrelevant. Instead, the trade-off between the speed of conver-
ence and efficiency is tuned only by determining the length
f the prediction horizon, V. This is due to the fact that if

is large, there is plenty of time to converge, so the opti-
izer can allow itself to aim for an efficient solution. If,

owever, V is shorter, all resources are marshalled to converging
uickly at the expense of efficiency. Fig. 10 shows the perfor-
ance of a system identical to that in Fig. 9, with the control

nd prediction horizons reduced to 3 and 4, respectively. As
xpected, the convergence to the desired setpoint exhibited in
ig. 10 is faster than that in Fig. 9, at the expense of efficiency
11.7% compared with 12.8%).

. Conclusions

As has been previously established, model-based control
cheme of a PEM fuel cell, relying on a reduced-order,
onlinear model of the process, can be used for robust reg-
lation. In addition, as demonstrated in this contribution,
ince the controller adjusts a number of manipulated vari-
bles, it takes advantage of all of the degrees of freedom
o simultaneously satisfy power demands while optimiz-
ng the fuel efficiency of the entire system. The use of

ppropriate constraints results in significant improvements
n fuel efficiency. We have shown that by appropriate for-

ulation of the objective function, reliable optimization of
he performance of a PEM fuel cell can be performed in



3 of Pow

w
c
s
e
p

A

(
S
i

A

a

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H

A

b

−

v
a
o
t
c
l
m
e

M

w
c
t

A

a

08 J. Golbert, D.R. Lewin / Journal

hich the main tunable parameter is the prediction and
ontrol horizons, V and U, respectively. We have demon-
trated that increased fuel efficiency can be obtained at the
xpense of slower responses, by increasing the values of these
arameters.
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ppendix A. Linear inequality constraints

Each control variable is bounded by a maximum value
llowed:

u1,k+1

...

u1,k+U

...

un,k+1

...

un,k+U

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

umax,1

...

umax,1

...

umax,n

...

umax,n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(29)

owever

u1,k+1

...

u1,k+U

...

un,k+1

...

un,k+U

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1,k

...

u1,k

...

un,k

...

un,k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0
...

. . .
. . .

...

1 · · · 1 0 · · · ...

0 · · · 0
. . .

. . .
...

... · · · · · · 0 1 0 0

... · · · · · · 0
... 1

...

0
... · · · 0 1 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢

du1,k+1

...

⎤
⎥⎥⎥⎥

⎡
⎢⎢⎢⎢

u1,k

...

⎤
⎥⎥⎥⎥
·
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

du1,k+U

...

dun,k+1

...

dun,k+U

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1,k

...

un,k

...

un,k

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ A1 du (30)

ence,

b

g

A

o
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1 du ≤

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

umax,1

...

umax,1

...

umax,n

...

umax,n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1,k

...

u1,k

...

un,k

...

un,k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= b1 (31)

In a similar fashion linear constraints are defined for the lower
oundaries:

A1 du ≤ −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

umin,1

...

umin,1

...

umin,n

...

umin,n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1,k

...

u1,k

...

un,k

...

un,k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= b2 (32)

So far, the constraints ensure that the maximal values of the
ariables will not be exceeded at any step. If the fuel flow rate
nd the current density are to be manipulated there is a danger
f the optimizer requesting an infeasible current density (above
he limiting current density, which is largely influenced by con-
entration overpotential). Thus, for the sake of feasibility (as
ong as the current density is the input to the fuel cell model) a

inimum ratio between the fuel and the current density must be
nforced at all times:

H2 ≥ ϕ
hL

2F
I = φI (33)

here ϕ is a tunable variable, which, in essence, ensures suffi-
ient saturation of hydrogen. Translating from the values of u to
he changes in u at each step and defining:

3 ≡

⎡
⎢⎢⎣

−1 0 0 0 · · · 0 φ 0 0
...

. . . 0
...

. . .
...

...
. . . 0

−1 · · · −1 0 · · · 0 φ · · · φ

⎤
⎥⎥⎦

nd

3 ≡ (uMH2 ,k − φuI,k)

⎡
⎢⎢⎣

1
...

1

⎤
⎥⎥⎦

ives
3 du ≤ b3 (34)

Note that when defining the matrix, the actual indices depend
n the number of input variables being used.
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Similar constraints must be defined for the oxygen/current
atio. Combining all of the constraints gives

A1

−A1

A3

⎤
⎥⎥⎦ du ≤

⎡
⎢⎣

b1

b2

b3

⎤
⎥⎦ (35)

This defines all of the constraints. For the sake of sensitivity,
he variables are all scaled by their respective values entering
he optimization:

ui = du∗
i ui,nom (36)

r

u = diag

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u1,nom

...

u1,nom

...

un,nom

...

un,nom

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

du∗ (37)

Substituting Eq. (37) into Eq. (35) gives

A1

−A1

A3

⎤
⎥⎥⎦ · diag

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

u1,nom

...

u1,nom

...

un,nom

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

du∗ ≤

⎡
⎢⎣

b1

b2

b3

⎤
⎥⎦ (38)
⎜⎜⎜⎝
⎢⎢⎢⎣ ...

un,nom

⎥⎥⎥⎦
⎟⎟⎟⎠
er Sources 173 (2007) 298–309 309

These are the linear constraints on the optimization vari-
bles. Furthermore, in cases where the hydrogen or oxygen flow
ates are not optimized, the current is limited to the permitted
atio between the current and the constant value of the reactant
ow rate. In this case, the upper limit on the current is either

he set maximum current density (imposed by the user) or the
alue determined by the permitted current/reactant flow ratio,
he lower of the two.

Note that since the optimization variables include the state
nd output variables as well, the constraint matrix needs to be
added with zeros to match the dimensions of the optimization
ariable.
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